Metabolomic investigations on Nesterenkonia flava from different origins revealed significant intraspecies differences between marine and terrestrial actinomycetes
Project description:Metabolism differs in women and men at homeostasis. Critically ill patients have profound dysregulation of homeostasis and metabolism. It is not clear if the metabolic response to critical illness differs in women compared to men. Such sex-specific differences in illness response would have consequences for personalized medicine. Our aim was to determine the sex-specific metabolomic response to early critical illness. We performed a post-hoc metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Using mixed-effects modeling, we studied sex-specific changes in metabolites over time adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and 25-hydroxyvitamin D response to intervention. In women, multiple members of the sphingomyelin and lysophospholipid metabolite classes had significantly positive Bonferroni corrected associations over time compared to men. Further, multiple representatives of the acylcarnitine, androgenic steroid, bile acid, nucleotide and amino acid metabolite classes had significantly negative Bonferroni corrected associations over time compared to men. Gaussian graphical model analyses revealed sex-specific functional modules. Our findings show that robust and coordinated sex-specific metabolite differences exist early in critical illness.
Project description:Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world's ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species.
Project description:Sarcoidosis is a disorder characterized by granulomatous inflammation of unclear etiology. In this study we evaluated whether veterans with sarcoidosis exhibited different plasma metabolomic and metallomic profiles compared with civilians with sarcoidosis. A case control study was performed on veteran and civilian patients with confirmed sarcoidosis. Proton nuclear magnetic resonance spectroscopy (1H NMR), hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify metabolites and metal elements in plasma samples. Our results revealed that the veterans with sarcoidosis significantly differed from civilians, according to metabolic and metallomics profiles. Moreover, the results showed that veterans with sarcoidosis and veterans with COPD were similar to each other in metabolomics and metallomics profiles. This study suggests the important role of environmental risk factors in the development of different molecular phenotypic responses of sarcoidosis. In addition, this study suggests that sarcoidosis in veterans may be an occupational disease.
Project description:Flavor is a critical factor in apple quality. To better understand apple flavor, this study aimed to identify the relationships between sensory attributes and the chemical composition (volatiles and non-volatiles) of apples using a combined metabolomic and sensory evaluation. Sensory results showed the positive (apple, fruity, pineapple, sweetness, sourness) and negative (cucumber) flavor attributes of apples. A metabolomic analysis with statistical correlations revealed significant metabolites related to the flavor attributes of apples. Volatile esters (e.g., hexyl acetate and 2-methylbutyl acetate for apple and fruity notes) and non-volatile sugars and acids (total sugars, tartaric acid, and malic acid for balanced sweet and tart flavors) were associated with the apple flavor preferred by consumers. Some aldehydes and alcohols (e.g., (E)-2-nonenal) contributed to a negative hedonic perception (cucumber). The collected information demonstrated the roles of key chemical compounds in apple flavor quality, and may be applicable to quality control.
Project description:IntroductionThe domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs.ObjectivesThis study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs.MethodsGas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study.Results449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size.ConclusionSmall dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function.
Project description:Marine microorganisms are an important source of natural products with potent bioactivities. Unlike the land, the ocean, especially the deep-sea, is characterized by high pressure, high salinity, low nutrition, and no light among others. Therefore, the biodiversity of marine microorganisms is supposed to be very different from that of the terrestrial ones. Yet, many marine microorganisms can find their counterparts in terrestrial environments. To evaluate their differences, a comparative metabolomics investigation was performed on four strains of Nesterenkonia flava isolated from terrestrial and marine environments. As a result, marine strains were clearly distinguished from terrestrial ones on the principal components analysis (PCA) score plot. Furthermore, by partial least squares discrimination analysis (PLS-DA) and univariate analysis, the characteristic metabolites were figured out and found to be involved in osmotic regulation, redox balancing, and energy metabolism. Our results demonstrated that marine actinomycetes could produce novel secondary metabolites different from their terrestrial relatives because they have special metabolic patterns closely related to the unique features of their living environment.
Project description:Anoxia is a significant challenge for most animals, as it can lead to tissue damage and death. Among amphibians, the Siberian frog Rana amurensis is the only known species capable of surviving near-zero levels of oxygen in water for a prolonged period. In this study, we aimed to compare metabolomic profiles of the liver, brain, and heart of the Siberian frog exposed to long-term oxygen deprivation (approximately 0.2 mg/L water) with those of the susceptible Far Eastern frog (Rana dybowskii) subjected to short-term hypoxia to the limits of its tolerance. One of the most pronounced features was that the organs of the Far Eastern frog contained more lactate than those of the Siberian frog despite a much shorter exposure time. The amounts of succinate were similar between the two species. Interestingly, glycerol and 2,3-butanediol were found to be significantly accumulated under hypoxia in the Siberian frog, but not in the Far Eastern frog. The role and biosynthesis of these substances are still unclear, but they are most likely formed in certain side pathways of glycolysis. Based on the obtained data, we suggest a pathway for metabolic changes in the Siberian frog under anoxia.
Project description:Palatine tonsils (PT) are B cell-predominant lymphoid organs that provide primary immune responses to airborne and dietary pathogens. Numerous histopathological and immunological studies have been conducted on PT, yet no investigations have been conducted on its metabolic profile. We performed high-resolution magic angle spinning nuclear magnetic resonance spectroscopy-based metabolic profiling in 35 pediatric and 28 adult human palatine tonsillar tissue samples. A total of 36 metabolites were identified, and the levels of 10 metabolites were significantly different depending on age. Among them, partial correlation analysis shows that glucose levels increased with age, whereas glycine, phosphocholine, phosphoethanolamine, and ascorbate levels decreased with age. We confirmed the decrease in immunometabolic activity in adults through metabolomic analysis, which had been anticipated from previous histological and immunological studies on the PT. These results improve our understanding of metabolic changes in the PT with aging and serve as a basis for future tonsil-related metabolomic studies.
Project description:COVID-19 infection has revealed significant effects on the human blood metabolome and lipoproteome, which have been coherently observed in different cohorts worldwide and across the various waves of SARS-CoV-2 pandemic. As one of the main clinical manifestations of COVID-19 is a severe acute respiratory illness, it is pertinent to explore whether this metabolic/lipoproteomic disturbance is associated with the respiratory symptoms. To this purpose we are here reporting comparative1H NMR analyses of the plasma of 252 COVID-19 patients and of patients with non-COVID-19 interstitial (24 individuals) or lobar (21 individuals) pneumonia, all matched by age, gender and disease severity. The analysis is based on 24 metabolites and 114 lipoprotein parameters. Several common traits are observed among the three groups, albeit with some peculiar features characteristic of each group. The main differences were observed between the lobar cases and all the others.