Project description:The inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome-the molecular interface between host and microbiota-are less well understood. To address this gap, we performed untargeted metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery (n = 155) and validation (n = 65) cohorts of CD, UC and non-IBD control patients. Metabolomic and metagenomic profiles were broadly correlated with faecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While > 50% of differentially abundant metabolite features were uncharacterized, many could be assigned putative roles through metabolomic 'guilt by association' (covariation with known metabolites). Differentially abundant species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between differentially abundant species and well-characterized differentially abundant metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets.
Project description:Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract that is often characterized by abdominal pain, rectal bleeding, inflammation, and weight loss. Many studies have posited that the gut microbiome may play an integral role in the onset and exacerbation of IBD. Here, we present a novel computational analysis of a previously published IBD dataset. This dataset consists of shotgun sequence data generated from fecal samples collected from individuals with IBD and an internal control group. Utilizing multiple external controls, together with appropriate techniques to handle the compositionality aspect of sequence data, our computational framework can identify and corroborate differences in the taxonomic profiles, bacterial association networks, and functional capacity within the IBD gut microbiome. Our analysis identified 42 bacterial species that are differentially abundant between IBD and every control group (one internal control and two external controls) with at least a twofold difference. Of the 42 species, 34 were significantly elevated in IBD, relative to every other control. These 34 species were still present in the control groups and appear to play important roles, according to network centrality and degree, in all bacterial association networks. Many of the species elevated in IBD have been implicated in modulating the immune response, mucin degradation, antibiotic resistance, and inflammation. We also identified elevated relative abundances of protein families related to signal transduction, sporulation and germination, and polysaccharide degradation as well as decreased relative abundance of protein families related to menaquinone and ubiquinone biosynthesis. Finally, we identified differences in functional capacities between IBD and healthy controls, and subsequently linked the changes in the functional capacity to previously published clinical research and to symptoms that commonly occur in IBD.
Project description:Inflammatory bowel disease (IBD) is characterized by flares of inflammation with a periodic need for increased medication and sometimes even surgery. The aetiology of IBD is partly attributed to a deregulated immune response to gut microbiome dysbiosis. Cross-sectional studies have revealed microbial signatures for different IBD subtypes, including ulcerative colitis, colonic Crohn's disease and ileal Crohn's disease. Although IBD is dynamic, microbiome studies have primarily focused on single time points or a few individuals. Here, we dissect the long-term dynamic behaviour of the gut microbiome in IBD and differentiate this from normal variation. Microbiomes of IBD subjects fluctuate more than those of healthy individuals, based on deviation from a newly defined healthy plane (HP). Ileal Crohn's disease subjects deviated most from the HP, especially subjects with surgical resection. Intriguingly, the microbiomes of some IBD subjects periodically visited the HP then deviated away from it. Inflammation was not directly correlated with distance to the healthy plane, but there was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease. These results will help guide therapies that will redirect the gut microbiome towards a healthy state and maintain remission in IBD.
Project description:The role of the gut microbiome in models of inflammatory and autoimmune disease is now well characterized. Renewed interest in the human microbiome and its metabolites, as well as notable advances in host mucosal immunology, has opened multiple avenues of research to potentially modulate inflammatory responses. The complexity and interdependence of these diet-microbe-metabolite-host interactions are rapidly being unraveled. Importantly, most of the progress in the field comes from new knowledge about the functional properties of these microorganisms in physiology and their effect in mucosal immunity and distal inflammation. This review summarizes the preclinical and clinical evidence on how dietary, probiotic, prebiotic, and microbiome based therapeutics affect our understanding of wellness and disease, particularly in autoimmunity.
Project description:Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract that affects millions of people worldwide. Genetic, environmental and microbial factors have been implicated in the onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses and aberrant immune responses remain largely unknown. The integrative Human Microbiome Project seeks to close these gaps by examining the dynamics of microbiome functionality in disease by profiling the gut microbiomes of >100 individuals sampled over a 1-year period. Here, we present the first results based on 78 paired faecal metagenomes and metatranscriptomes, and 222 additional metagenomes from 59 patients with Crohn's disease, 34 with ulcerative colitis and 24 non-IBD control patients. We demonstrate several cases in which measures of microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles of functional potential. First, although many microbial organisms exhibited concordant DNA and RNA abundances, we also detected species-specific biases in transcriptional activity, revealing predominant transcription of pathways by individual microorganisms per host (for example, by Faecalibacterium prausnitzii). Thus, a loss of these organisms in disease may have more far-reaching consequences than suggested by their genomic abundances. Furthermore, we identified organisms that were metagenomically abundant but inactive or dormant in the gut with little or no expression (for example, Dialister invisus). Last, certain disease-specific microbial characteristics were more pronounced or only detectable at the transcript level, such as pathways that were predominantly expressed by different organisms in patients with IBD (for example, Bacteroides vulgatus and Alistipes putredinis). This provides potential insights into gut microbial pathway transcription that can vary over time, inducing phenotypical changes that are complementary to those linked to metagenomic abundances. The study's results highlight the strength of analysing both the activity and the presence of gut microorganisms to provide insight into the role of the microbiome in IBD.
Project description:Inflammatory bowel diseases (IBDs) are complex medical conditions in which the gut microbiota is attacked by the immune system of genetically predisposed subjects when exposed to yet unclear environmental factors. The complexity of this class of diseases makes them suitable to be represented and studied with network science. In this paper, the metagenomic data of control, Crohn's disease, and ulcerative colitis subjects' gut microbiota were investigated by representing this data as correlation networks and co-expression networks. We obtained correlation networks by calculating Pearson's correlation between gene expression across subjects. A percolation-based procedure was used to threshold and binarize the adjacency matrices. In contrast, co-expression networks involved the construction of the bipartite subjects-genes networks and the monopartite genes-genes projection after binarization of the biadjacency matrix. Centrality measures and community detection were used on the so-built networks to mine data complexity and highlight possible biomarkers of the diseases. The main results were about the modules of Bacteroides, which were connected in the control subjects' correlation network, Faecalibacterium prausnitzii, where co-enzyme A became central in IBD correlation networks and Escherichia coli, whose module has different patterns of integration within the whole network in the different diagnoses.
Project description:In view of the increasing evidence that commonly prescribed, non-antibiotic drugs interact with the gut microbiome, we re-examined the microbiota variance in inflammatory bowel disease (IBD) to determine the degree to which medication and supplement intake might account for compositional differences between disease subtypes and geographic location. We assessed the confounding effects of various treatments on the faecal microbiota composition (16S rRNA gene sequencing) in persons with Crohn's disease (CD; n = 188) or ulcerative colitis (UC; n = 161) from either Cork (Ireland) or Manitoba (Canada) sampled at three time points. The medication profiles between persons with UC and CD and from different countries varied in number and type of drugs taken. Among Canadian participants with CD, surgical resection and overall medication and supplement usage is significantly more common than for their Irish counterparts. Treatments explained more microbiota variance (3.5%) than all other factors combined (2.4%) and 40 of the 78 tested medications and supplements showed significant associations with at least one taxon in the gut microbiota. However, while treatments accounted for a relatively small proportion of the geographic contribution to microbiome variance between Irish and Canadian participants, additive effects from multiple medications contributed significantly to microbiome differences between UC and CD.
Project description:Changes in the gut microbiome have been associated with inflammatory bowel disease. A protective role of short chain fatty acids produced by the gut microbiota has been suggested as a causal mechanism. Nevertheless, multi-omic analyses have failed to identify a clear link between changes in specific taxa and disease states. Recently, metagenomic analyses unveiled that gut bacterial species have a previously unappreciated genomic diversity, implying that a geno-centric approach may be better suited to identifying the mechanisms involved. Here, we quantify the abundance of terminal genes in propionate-producing fermentative pathways in the microbiome of a large cohort of healthy subjects and patients with inflammatory bowel disease. The results show that propionate kinases responsible for propionate production in the gut are depleted in patients with Crohn's disease. Our results also indicate that changes in overall species abundances do not necessarily correlate with changes in the abundances of metabolic genes, suggesting that these genes are not part of the core genome. This, in turn, suggests that changes in strain composition may be as important as changes in species abundance in alterations of the gut microbiome associated with pathological conditions.
Project description:Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.