Project description:The practical advantages of capillary whole blood collection over venipuncture plasma collection for human exposome research are well known. However, before epidemiologists, clinicians, and public health researchers employ these microvolume sample collections, a rigorous evaluation of pre-analytical storage conditions is needed to develop protocols that maximize sample stability and reliability over time. Therefore, we performed a controlled experiment of dried whole blood collected on 10 μL Mitra microsamplers (DBM), 5-mm punches of whole blood from a dried blood spot (DBS), and 10 μL of plasma, and evaluated the effects of storage conditions at 4 °C, -20 °C, or -80 °C for up to 6 months on the resulting metabolite profiles measured with untargeted liquid chromatography-high resolution mass spectrometry (LC-HRMS). At -80 °C storage conditions, metabolite profiles from DBS, DBM, and plasma showed similar stability. While DBS and DBM metabolite profiles remained similarly stable at -20 °C storage, plasma profiles showed decreased stability at -20 °C compared to -80 °C storage. At refrigerated temperatures (4 °C), metabolite profiles collected on DBM were more stable than plasma or DBS, particularly for lipid classes. These results inform robust capillary blood sample storage protocols for DBM and DBS at potentially warmer temperatures than -80 °C, which may facilitate blood collections for populations outside of a clinical setting.
Project description:BackgroundAfrican elephants in managed care have presented differences in the balance between omega-3 and omega-6 fatty acids, a situation primarily thought to be due to dietary differences between the managed animals and their free-ranging counterparts. Because of this, circulating fatty acid status is included in routine monitoring of elephant health. A method of blood collection that requires only a few drops of whole blood, dried on filter paper (DBS) and can be used for analyzing full fatty acid profiles offers advantages in clinical application.MethodsThis study compared the use of whole blood, and whole blood DBS, serum or plasma for use in evaluating circulating fatty acid composition in African savannah elephants. Samples from six African elephants (two males and four females) were collected during the same week at the NC Zoo, Asheboro, NC.ResultsResults found only 2 of 36 individual fatty acids and none of the 10 fatty acid groupings were different when comparing the four blood fraction sample types to each other with Mann-Whitney U-Test pairwise comparisons. Myristic acid (14:0) was lower in the DBS samples than in whole blood, serum, and plasma and pentadecaenoic acid (15:1) was slightly more concentrated in DBS and whole blood.DiscussionResults indicate that fatty acid profile of serum, plasma, whole blood, and DBS are comparable in African elephants. The DBS method offers advantages in acquisition and handling and may be preferable to other methods in both routine health assessment of captive animals and field research on free ranging animals.
Project description:The preferred sampling medium for measuring human exposures of persistent organic compounds (POPs) is blood, and relevant sample types include whole blood, plasma, and dried blood spots (DBS). Because information regarding the performance and comparability of measurements across these sample types is limited, it is difficult to compare across studies. This study evaluates the performance of POP measurements in plasma, whole blood and DBS, and presents the distribution coefficients needed to convert concentrations among the three sample types. Blood samples were collected from adult volunteers, along with demographic and smoking information, and analyzed by GC/MS for organochlorine pesticides (OCPs), chlorinated hydrocarbons (CHCs), polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (PBDEs). Regression models were used to evaluate the relationships between the sample types and possible effects of personal covariates. Distribution coefficients also were calculated using physically-based models. Across all compounds, concentrations in plasma were consistently the highest; concentrations in whole blood and DBS samples were comparable. Distribution coefficients for plasma to whole blood concentrations ranged from 1.74 to 2.26 for pesticides/CHCs, averaged 1.69 ± 0.06 for the PCBs, and averaged 1.65 ± 0.03 for the PBDEs. Regression models closely fit most chemicals (R (2) > 0.80), and whole blood and DBS samples generally showed very good agreement. Distribution coefficients estimated using biologically-based models were near one and did not explain the observed distribution. Among the study population, median concentrations of several pesticides/CHCs and PBDEs exceeded levels reported in the 2007-2008 National Health and Nutrition Examination Survey, while levels of other OCPs and PBDEs were comparable or lower. Race and smoking status appeared to slightly affect plasma/blood concentration ratios for several POPs. The experimentally-determined distribution coefficients can be used to compare POP exposures across studies using different types of blood-based matrices.
Project description:IntroductionUntargeted metabolomics holds significant promise for biomarker detection and development. In resource-limited settings, a dried blood spot (DBS)-based platform would offer significant advantages over plasma-based approaches that require a cold supply chain.ObjectivesThe primary goal of this study was to compare the ability of DBS- and plasma-based assays to characterize maternal metabolites. Utility of the two assays was also assessed in the context of a case-control predictive model in pregnant women living with HIV.MethodsUntargeted metabolomics was performed on archived paired maternal plasma and DBS from n = 79 women enrolled in a large clinical trial.ResultsA total of 984 named biochemicals were detected across both plasma and DBS samples, of which 627 (63.7%), 260 (26.4%), and 97 (9.9%) were detected in both plasma and DBS, plasma alone, and DBS alone, respectively. Variation attributable to study individual (R2 = 0.54, p < 0.001) exceeded that of the sample type (R2 = 0.21, p < 0.001), suggesting that both plasma and DBS were capable of differentiating individual metabolomic profiles. Log-transformed metabolite abundances were strongly correlated (mean Spearman rho = 0.51) but showed low agreement (mean intraclass correlation of 0.15). However, following standardization, DBS and plasma metabolite profiles were strongly concordant (mean intraclass correlation of 0.52). Random forests classification models for cases versus controls identified distinct feature sets with comparable performance in plasma and DBS (86.5% versus 91.2% mean accuracy, respectively).ConclusionMaternal plasma and DBS samples yield distinct metabolite profiles highly predictive of the individual subject. In our case study, classification models showed similar performance albeit with distinct feature sets. Appropriate normalization and standardization methods are critical to leverage data from both sample types. Ultimately, the choice of sample type will likely depend on the compounds of interest as well as logistical demands.
Project description:Use of capillary blood devices for exposome research can deepen our understanding of the intricate relationship between environment and health, and open up new avenues for preventive and personalized medicine, particularly for vulnerable populations. While the potential of these whole blood devices to accurately measure chemicals and metabolites has been demonstrated, how untargeted metabolomics data from these samplers can be integrated with previous and ongoing environmental health studies that have used conventional blood collection approaches is not yet clear. Therefore, we performed a comprehensive comparison between relative-quantitative metabolite profiles measured in venous blood collected with dried whole blood microsamplers (DBM), dried whole blood spots (DBS), and plasma from 54 mothers in an ethnically diverse population. We determined that a majority of the 309 chemicals and metabolites showed similar median intensity rank, moderate correlation, and moderate agreement between participant-quantiled intraclass correlation coefficients (ICCs) for pair-wise comparisons among the three biomatrices. In particular, whole blood sample types, DBM and DBS, were in highest agreement across metabolite comparison metrics, followed by metabolites measured in DBM and plasma, and then metabolites measured in DBS and plasma. We provide descriptive characteristics and measurement summaries as a reference database. This includes unique metabolites that were particularly concordant or discordant in pairwise comparisons. Our results demonstrate that the range of metabolites from untargeted metabolomics data collected with DBM, DBS, and plasma provides biologically relevant information for use in independent exposome investigations. However, before meta-analysis with combined datasets are performed, robust statistical approaches that integrate untargeted metabolomics data collected on different blood matrices need to be developed.
Project description:Three-dimensional (3D) dried blood spheroids form when whole blood is deposited onto hydrophobic paper and allowed to dry in ambient air. The adsorbed 3D dried blood spheroid present at the surface of the hydrophobic paper is observed to offer enhanced stability for labile analytes that would otherwise degrade if stored in the traditional two-dimensional (2D) dried blood spot method. The protective mechanism for the dried blood spheroid microsampling platform was studied using scanning electron microscopy (SEM), which revealed the presence of a passivation thin film at the surface of the spheroid that serves to stabilize the interior of the spheroid against environmental stressors. Through time-course experiments based on sequential SEM analyses, we discovered that the surface protective thin film forms through the self-assembly of red blood cells following the evaporation of water from the blood sample. The bridging mechanism of red blood cell aggregation is evident in our experiments, which leads to the distinct rouleau conformation of stacked red blood cells in less than 60 min after creating the blood spheroid. The stack of self-assembled red blood cells at the exterior of the spheroid subsequently lyse to afford the surface protective layer detected to be approximately 30 μm in thickness after three weeks of storage in ambient air. We applied this mechanistic insight to plasma and serum to enhance stability when stored under ambient conditions. In addition to physical characterization of these thin biofilms, we also used paper spray (PS) mass spectrometry (MS) to examine chemical changes that occur in the stored biofluid. For example, we present stability data for cocaine spiked in whole blood, plasma, and serum when stored under ambient conditions on hydrophilic and hydrophobic paper substrates.
Project description:A variety of atherosclerosis and cardiovascular disease (ASCVD) phenotypes are tightly linked to changes in the cardiac energy metabolism that can lead to a loss of metabolic flexibility and to unfavorable clinical outcomes. We conducted an association analysis of 31 ASCVD phenotypes and 97 whole blood amino acids, acylcarnitines and derived ratios in the LIFE-Adult (n = 9646) and LIFE-Heart (n = 5860) studies, respectively. In addition to hundreds of significant associations, a total of 62 associations of six phenotypes were found in both studies. Positive associations of various amino acids and a range of acylcarnitines with decreasing cardiovascular health indicate disruptions in mitochondrial, as well as peroxisomal fatty acid oxidation. We complemented our metabolite association analyses with whole blood and peripheral blood mononuclear cell (PBMC) gene-expression analyses of fatty acid oxidation and ketone-body metabolism related genes. This revealed several differential expressions for the heart failure biomarker N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in peripheral blood mononuclear cell (PBMC) gene expression. Finally, we constructed and compared three prediction models of significant stenosis in the LIFE-Heart study using (1) traditional risk factors only, (2) the metabolite panel only and (3) a combined model. Area under the receiver operating characteristic curve (AUC) comparison of these three models shows an improved prediction accuracy for the combined metabolite and classical risk factor model (AUC = 0.78, 95%-CI: 0.76-0.80). In conclusion, we improved our understanding of metabolic implications of ASCVD phenotypes by observing associations with metabolite concentrations and gene expression of the mitochondrial and peroxisomal fatty acid oxidation. Additionally, we demonstrated the predictive potential of the metabolite profile to improve classification of patients with significant stenosis.
Project description:BackgroundAssays have been developed for cross-sectional HIV incidence estimation using plasma samples. Large scale surveillance programs are planned using dried blood spot (DBS) specimens for incidence assessment. However, limited information exists on the performance of HIV cross-sectional incidence assays using DBS.MethodsThe assays evaluated were: Maxim HIV-1 Limiting Antigen Avidity EIA (LAg-Avidity), Sedia HIV-1 BED-Capture EIA (BED-CEIA), and CDC modified BioRad HIV-1/2 Plus O Avidity-based Assay (CDC-BioRad Avidity) using pre-determined cutoff values. 100 matched HIV-1 positive plasma and DBS samples, with known duration of infection, from the Consortium for the Evaluation and Performance of HIV Incidence Assays repository were tested. All assays were run in duplicate. To examine the degree of variability within and between results for each sample type, both categorical and continuous results were analyzed. Associations were assessed with Bland Altman, R2 values and Cohen's kappa coefficient (ĸ).ResultsIntra-assay variability using the same sample type was similar for all assays (R2 0.96 to 1.00). The R2 values comparing DBS and plasma results for LAg-Avidity, BED-CEIA, and CDC-BioRad Avidity were 0.96, 0.94, and 0.84, respectively. The concordance and ĸ values between DBS and plasma for all three assays were >87% and >0.64, respectively. The Bland-Altman analysis showed significant differences between plasma and DBS samples. For all three assays, a higher number of samples were classified as recent infections using DBS samples.ConclusionsDBS and plasma sample results were highly correlated. However, when compared to plasma, each assay performed somewhat differently in DBS at the lower and higher ends of the dynamic range. DBS samples were more likely to be classified as recently infected by all three assays, which may lead to overestimation of incidence in surveys using performance criteria derived for plasma samples.
Project description:BACKGROUND:Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. RESULTS:The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. CONCLUSION:This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.
Project description:BackgroundPrevious work has identified age-related negative correlations for γ-hydroxybutyric acid (GHB) and γ-aminobutyric acid (GABA) in plasma of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD). Using plasma and dried blood spots (DBS) collected in an ongoing natural history study, we tested the hypothesis that other biomarkers would follow a similar age-related negative correlation as seen for GHB/GABA. Samples (mixed sex) included: patients (n = 21 unique samples, 1-39.5 yrs) and parallel controls (n = 9 unique samples, 8.4-34.8 yrs). Archival control data (DBS only; n = 171, 0.5-39.9 yrs) was also included.ResultsMetabolites assessed included amino acids (plasma, DBS) and acylcarnitines, creatine, creatinine, and guanidinoacetate (DBS only). Age-related negative correlations for glycine (plasma, DBS) and sarcosine (N-methylglycine, plasma) were detected, accompanied by elevated proline and decreased levels of succinylacetone, argininosuccinate, formaminoglutamate, and creatinine. Significantly low acylcarnitines were detected in patients across all chain lengths (short-, medium- and long-chain). Significant age-dependent positive correlations for selected acylcarnitines (C6-, C12DC(dicarboxylic)-, C16-, C16:1-, C18:1-, C18:2OH-carnitines) were detected in patients and absent in controls. Receiver operating characteristic (ROC) curves for all binary comparisons revealed argininosuccinate and succinylacetone to be the most discriminating biomarkers (area > 0.92).ConclusionsAge-dependent acylcarnitine correlations may represent metabolic compensation responsive to age-related changes in GHB and GABA. Our study highlights novel biomarkers in SSADHD and expands the metabolic pathophysiology of this rare disorder of GABA metabolism.