Project description:Genome sequence data results are reported from experimental and bioinfomatic work using the technique 'Bulk Segregant Analysis' to determine the genetic basis of observed resistance to the azole antifungal compound itraconazole in the opportunistic fungal pathogen Aspergillus fumigatus.
Project description:The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4 sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveals new insights into SREBPM-bM-^@M-^Ys complex role in infection site adaptation and fungal virulence. 4 hour and 12 hour ChIP experiments were completed. Input control samples for each set were collected.
Project description:We have focused our investigation on the characterization of the role of the fungal specific SWI/SNF subunit, Snf6. Our data show that, although the C. albicans subunit has only limited sequence similarity to other fungal orthologs, Snf6 was copurified with SWI/SNF complex subunits including the catalytic ATPase subunit, Snf2. We show that Snf6 plays a critical role in biological processes that are essential for fungal pathogenesis including carbon metabolic flexibility, stress response and morphogenesis. The Snf6 regulon was determined by combining both genome-wide location (ChIP-chip) and transcriptional profiling (microarrays) to identify targets of the SWI/SNF complex under both yeast- and hyphal-promoting conditions.
2017-10-28 | GSE106278 | GEO
Project description:rhizosphere soil fungal raw data sequence
| PRJNA533005 | ENA
Project description:Marine fungal aerosol raw sequence data
Project description:The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4 sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveals new insights into SREBP’s complex role in infection site adaptation and fungal virulence.
Project description:Laser Capture Microdissection (LCM) was used for expression analysis of three contrasted fungal tissues of uredinia corresponding respectively to spores and sporogenous hyphae, fungal structures in the spongy mesophyll and fungal infection structures in the palisade mesophyll. The array probes were designed from gene models taken from the Joint Genome Institute (JGI, Department of Energy) Melampsora larici-populina genome sequence version 1. The aim of this study was to identify tissue-specific gene expression to gain insights into the genes specifically associated with the biotrophic phase and the sporulation phase of the rust fungus. We performed 9 hybridizations (NimbleGen) with samples derived from Laser Capture Microdissection (LCM) of three contrasted fungal tissues of uredinia, corresponding respectively to spores and sporogenous hyphae, fungal structures in the spongy mesophyll and fungal infection structures in the palisade mesophyll. Three replicates per tissue. All samples were labeled with Cy3.
Project description:Laser Capture Microdissection (LCM) was used for expression analysis of three contrasted fungal tissues of uredinia corresponding respectively to spores and sporogenous hyphae, fungal structures in the spongy mesophyll and fungal infection structures in the palisade mesophyll. The array probes were designed from gene models taken from the Joint Genome Institute (JGI, Department of Energy) Melampsora larici-populina genome sequence version 1. The aim of this study was to identify tissue-specific gene expression to gain insights into the genes specifically associated with the biotrophic phase and the sporulation phase of the rust fungus.