Project description:TNF is a proinflammatory cytokine with established roles in host defense and immune system organogenesis. Here we report a novel physiological function of TNF that extends its effect beyond the host into the developing offspring. A partial/complete maternal TNF-deficit, specifically in hematopoietic cells, resulted in reduced milk levels of chemokines IP-10, MCP-1/-3/-5, and MIP-1β, which in turn, augmented offspring postnatal hippocampal proliferation, leading to improved adult spatial memory. These effects were reproduced by the postpartum administration of a clinically used anti-TNF agent. Chemokines, fed to suckling pups of TNF-deficient mothers, restored both postnatal proliferation and adult spatial memory to normal levels. This work identifies a TNF-dependent “lactrocrine” pathway that programs offspring hippocampal development and memory. The level of ambient TNF is known to be downregulated by physical activity/exercise and adaptive stress; thus, we propose that the maternal TNF-milk chemokine pathway evolved to promote offspring adaptation to post-weaning environmental challenges/competition. Examined transcriptomes of TNF wild type offspring of TNF wild type or heterozygouse mothers
Project description:TNF is a proinflammatory cytokine with established roles in host defense and immune system organogenesis. Here we report a novel physiological function of TNF that extends its effect beyond the host into the developing offspring. A partial/complete maternal TNF-deficit, specifically in hematopoietic cells, resulted in reduced milk levels of chemokines IP-10, MCP-1/-3/-5, and MIP-1β, which in turn, augmented offspring postnatal hippocampal proliferation, leading to improved adult spatial memory. These effects were reproduced by the postpartum administration of a clinically used anti-TNF agent. Chemokines, fed to suckling pups of TNF-deficient mothers, restored both postnatal proliferation and adult spatial memory to normal levels. This work identifies a TNF-dependent “lactrocrine” pathway that programs offspring hippocampal development and memory. The level of ambient TNF is known to be downregulated by physical activity/exercise and adaptive stress; thus, we propose that the maternal TNF-milk chemokine pathway evolved to promote offspring adaptation to post-weaning environmental challenges/competition.
Project description:There is little information regarding the allergen content of milk feeds in the preterm population. Previous studies have evaluated specific proteins/peptides via ELISA, but no studies have performed a broad analysis of the allergenic peptide content and protease activity of milk feeds in this population. Preterm infants spend a critical window of time for immune development in the Newborn Intensive Care Unit (NICU), and may receive fortified donor milk, maternal milk or formula feeds via nasogastric tube or bottle instead of fresh breastmilk via breastfeeding.
Project description:Breast milk is associated with multiple benefits for the infant, including reduced incidence of chronic diseases such as Inflammatory Bowel Disease. We investigated the role of milk-derived maternal IgA (matIgA) on the developing small intestinal immune system. Using a model, where genotypically identical pups were fed by dams differed only in IgA production we revealed that matIgA regulates the assembly of the infant small intestinal microbiota and epithelium, supporting Lactobacillaceae and suppressing Enterobacteriaceae and the development of secretory lineage cells. Via the microbiota, MatIgA also regulated infant immune cells and suppressed early activation of Th17 cells. We demonstrated that Enterobacteriaceae-specific CD4+ T cells, activated in the absence of matIgA, persisted long term where they may contribute to subsequent inflammatory episodes. This work suggests that maternal IgA shapes the mucosal immune response by regulating the early-life microbiota thus preventing the development of inflammatory microbiota-specific T cells with memory potential.
Project description:Maternal health and diet can have important consequences for offspring nutrition and metabolic health. Signals are communicated from the mother to the infant during lactation through milk via macronutrients, hormones and bioactive molecules. In this study we designed experiments to probe the mother-milk-infant triad in the condition of normal maternal health and upon exposure to high fat diet (HFD) with or without concurrent metformin exposure. We examined maternal characteristics, milk composition and offspring metabolic parameters on postnatal day 16, prior to offspring beginning to wean. We found that lactational HFD increased maternal adipose tissue, mammary gland adipocytes, and altered milk lipid composition causing a higher amount of n-6 long chain fatty acids and lower n-3. Offspring of HFD dams were heavier with more body fat during suckling. Metformin exposure decreased maternal glucose and several amino acids. Offspring of met dams were smaller during suckling. Gene expression in the lactating mammary glands was impacted to a greater extent by metformin but both metformin and HFD altered genes related to muscle contraction, indicating that these genes may be more susceptible to lactational stressors. Our study demonstrates the impact of common maternal exposures during lactation on milk composition, mammary gland function and offspring growth with metformin having little capacity to recuse from the effects of a maternal HFD during lactation.
Project description:Transcription profiling by array of human mammary epithelial cells (HMEC) stimulated with TNF vs. controls reveals TNF induces distinct expression programs
Project description:Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in response to cytokines. However, the cytokine responses in memory T cells remain largely understudied. We used quantitative proteomics, bulk RNA-seq and single-cell RNA-seq of over 40,000 human naïve and memory CD4+ T cells to generate a detailed map of cytokine-regulated gene expression programs. We demonstrated that cytokine response differs substantially between naïve and memory T cells and showed that memory cells are unable to differentiate into the Th2 phenotype. Moreover, memory T cells acquire a Th17-like phenotype in response to iTreg polarization. At the single-cell level, we demonstrated that T cells form a continuum which progresses from naïve to effector memory T cells. This continuum is accompanied by a gradual increase in the expression levels of chemokines and cytokines and thus represents an effectorness gradient. Finally, we found that T cell cytokine responses are determined by where the cells lie in the effectorness gradient and identified genes whose expression is controlled by cytokines in an effectorness-dependent manner. Our results shed light on the heterogeneity of T cells and their responses to cytokines, provide insight into immune disease inflammation and could inform drug development.
Project description:Transcription profiling by array of human umbilical vein endothelial cells (HUVEC) stimulated with TNF vs. controls reveals TNF induces distinct expression programs
Project description:High throughput sequencing of miRNAs collected from tammar milk at different time points of lactation showed high levels of miRNA secreted in milk and allowed the identification of differentially expressed milk miRNAs during the lactation cycle as putative markers of mammary gland activity and functional candidate signals to assist growth and timed development of the young. Comparative analysis of miRNA distribution in milk and blood serum suggests that milk miRNAs are primarily expressed from mammary gland rather than transferred from maternal circulating blood, likely through a new putative exosomal secretory pathway. 8 profiles were produced. Duplicates of day175