Project description:BackgroundCoronavirus disease 2019 (COVID-19) is a devastating pandemic that causes disease with a variability in susceptibility and mortality based on variants of various clinical and demographic factors, including particular genes among populations.ObjectivesDetermine associations of demographic, clinical, laboratory, and single nucleotide polymorphisms in the ACE2, TMPRSS2, TNF-α, and IFN-γ genes to the incidence of infection and mortality in COVID-19 patients.DesignProspective cohort study SETTINGS: Various cities in the Kurdistan Region of Iraq.Patients and methodsThis prospective cohort study compared laboratory markers (D-dimer, tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], C-reactive protein [CRP], lymphocyte and neutrophil counts) between COVID-19 patients and healthy controls. DNA was extracted from blood, and genotypes were done by Sanger sequencing.Main outcome measuresSingle nucleotide polymorphisms of the ACE2, TMPRSS2, TNF-α, and IFN-γ genes and demographic characteristics and laboratory markers for predicting mortality in COVID-19.Sample size203 (153 COVID-19 patients, 50 health control subjects).ResultsForty-eight (31.4%) of the COVID-19 patients died. Age over 40 and comorbidities were risk factors for mortality, but the strongest associations were with serum IFN-γ, the neutrophil-to-lymphocyte ratio (NLR), and serum TNF-α. The AA genotype and A allele of TMPRSS2 rs2070788 decreased while the GA genotype and A allele of TNF-α increased susceptibility to COVID-19. Patients with the GA genotype of TNF-α rs1800629 had shorter survival times (9.9 days) than those carrying the GG genotype (18.3 days) (P<.0001 by log-rank test). The GA genotype versus the GG genotype was associated with higher levels of serum TNF-α. The GA genotype increased mortality rates by up to 3.8 fold. The survival rate for COVID-19 patients carrying the IFN-γ rs2430561 TT genotype (58.5%) was lower than in patients with the TA and AA genotypes (80.3%). The TT genotype increased the risk of death (HR=3.664, P<.0001) and was linked to high serum IFN-γ production. Olfactory dysfunction was a predictor of survival among COVID-19 patients.ConclusionsAge older than 40, comorbidities, the NLR and particular genotypes for and the IFN-γ and TNF-α genes were risk factors for death. Larger studies in different populations must be conducted to validate the possible role of particular SNPs as genetic markers for disease severity and mortality in COVID-19 disease.LimitationsSmall sample size.Conflict of interestNone.
Project description:BackgroundVitamin D (Vit D) function in asthma progression has been studied well. The effects of genetic variations in Vit D pathway molecules have been also studied, although the results are contradicted. In the present study, for the first time we examined the Vit D pathway molecules included serum Vit D and vitamin D-binding protein (VDBP) and also genetic variations in the vitamin D receptor (VDR) and VDBP in a Kurdish population with asthma.MethodsAn enzyme-linked immunosorbent assay (ELISA) method was used to measure the serum Vit D and VDBP. VDR rs1544410 and rs2228570 and VDBP rs7041 were assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).ResultsThe serum level of Vit D significantly decreased in asthmatic patients versus controls (16.26 ± 6.76 vs 23.05 ± 10.57 ng/mL, P value = .001). We observed an indirect correlation between Vit D and clinical findings. We also found an increased level of serum VDBP in patients as compared to the controls (1044.6 ± 310.82 vs 545.95 ± 121.73 µg/mL, P value < .0001). Besides, the risk of asthma progression was increased in patients with the VDR rs2228570 CC and VDBP rs7041 GG genotypes (OR = 3.56, P = .0382 and OR = 2.58, P = .01, respectively).ConclusionIn summary, our results explain the influence of the genetic variations in VDR and VDBP in addition to Vit D and VDBP serum concentrations on asthma susceptibility in the Kurdish population.
Project description:Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Project description:In this study we profiled 288 new serum proteomics samples measured at admission from patients hospitalized within the Mount Sinai Health System with positive SARS-CoV-2 infection. We first computed Th1 and Th2 pathway enrichment scores by gene set variation analysis and then compared the differences in Th2 and Th1 pathway scores between patients that died compared to those that survived.
Project description:BackgroundThis study aims to investigate the association between candidate host genetic polymorphisms and COVID-19 susceptibility, severity, hospitalization, hypoxia, and their combined effect, measured by the polygenic risk score (PRS).MethodsThree hundred and seventy-six Lebanese participants, comprising 151 controls and 225 cases, were included. Clinical data were obtained from questionnaires and medical records. DNA isolated from peripheral blood was genotyped for ACE1 rs1799752, ACE2 rs2074192, TMPRSS2 rs75603675 and OAS1 rs107746771 using TaqMan assays, and for TMPRSS2 rs35074065 using Sanger Sequencing. Candidate genetic variants were analyzed in association with COVID-19 susceptibility, severity, hospitalization and hypoxia, using univariate and multivariate models. PRS constructed from the weighted sum of variants was evaluated in association with COVID-19 outcomes.ResultsIn this study, there were no statistically significant differences in the frequencies of candidate variant alleles between cases, controls and within disease outcomes subgroups, after adjustment for confounders. PRS was not associated with COVID-19 susceptibility and hospitalization, it however significantly predicted COVID-19 severity (P = 0.01).ConclusionThis study highlights the importance of genetic testing for key host genes involved in COVID-19 life cycle and eventually measuring the PRS which proves to be an important tool for prognosis assessment in vulnerable individuals, potentially enhancing patient care.
Project description:BackgroundCoronavirus Disease 2019 (COVID-19) is a global pandemic, and mortality and clinical consequences vary across countries. One of the factors influencing COVID-19 outcomes is genetic polymorphism. Two Kurdish populations, Sorani and Hawrami, live in the Sulaimani province of the Kurdistan Region of Iraq. It seems Hawrami had a milder COVID-19 outcome. According to previous research conducted on various ethnic groups across the globe, single nucleotide polymorphisms (SNPs) in the interferon-induced transmembrane protein 3 (IFITM3) and interluken-6 (IL6) genes were associated with the severity of COVID-19 in those populations.Methods and resultsWe hypothesized that Hawrami may have protective SNPs. So, in this study, we used DNA sequencing to genotype three IFITM3 SNPs and nine IL6 SNPs by DNA sequencing to investigate the association of Sorani and Hawrami population polymorphisms. Genotype AA for the rs12252 SNP in IFITM3 was insignificantly more common in the Sorani group (54% vs. 44%). The Hawrami population showed a higher percentage of the CC genotype of the rs34481144 SNP in the IFITM3 gene (62% vs. 44.3%) and a higher proportion of the non-risky GG genotype of the rs1800795 SNP in the IL6 gene (53.4 vs. 43.3); however, the SNPs were insignificantly associated between the two populations.ConclusionsIFITM3 and IL6 SNPs have no statistically significant association between the two Kurdish populations. The decreased proportion of non-risk alleles at rs34481144 and rs1800795 in the Hawrami population may partially support the research hypothesis. However, contrary to our hypothesis, the Sorani group had an insignificantly higher protective variant of the rs12252 SNP.
Project description:Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the pathogenesis is unclear. Host genetic background is one of the main factors influencing the patients' susceptibility to several viral infectious diseases. This study aimed to investigate the association between host genetic polymorphisms of two genes, including vitamin D receptor (VDR) and vitamin D binding protein (DBP), and susceptibility to COVID-19 in a sample of the Iranian population. This case-control study enrolled 188 hospitalized COVID-19 patients as the case group and 218 suspected COVID-19 patients with mild signs as the control group. The VDR (rs7975232, rs731236 and rs2228570) and DBP (rs7041) gene single nucleotide polymorphisms (SNPs) were genotyped by Polymerase Chain Reaction Restriction - Fragment Length Polymorphism (PCR-RFLP) method. A significant association between rs2228570 SNP in the VDR gene and the susceptibility of COVID-19 was found between case and control groups. The CT genotype (Heterozygous) of rs2228570 C > T polymorphism showed significant association with a 3.088 fold increased odds of COVID-19 (p < .0001; adjusted OR: 3.088; 95% CI: 1.902-5.012). In addition, a significant association between CC genotype of rs2228570 CT polymorphism and increased odds of COVID-19 in male and female groups (p = .001; adjusted OR: 3.125; 95% CI: 1.630-5.991 and p = .002; adjusted OR: 3.071; 95% CI: 1.485-6.354 respectively) were determined. Our results revealed no significant differences in the frequency of genotype and allele of VDR (rs7975232 and rs731236) and DBP (rs7041) between SARS-CoV-2-infected patients and controls (p > .05). Our results showed that polymorphism of VDR (rs2228570) probably could influence individual susceptibility to COVID-19. The polymorphisms of VDR (rs7975232 and rs731236) and DBP (rs7041) were not associated with SARS-CoV-2 infection susceptibility.
Project description:Background Angiotensin-converting enzyme 2 (ACE2) is a metallopeptidase that primarily functions as a negative regulator of renin angiotensin system (RAS) by converting angiotensin II (Ang II) to angiotensin 1-7. Contrary to this, another RAS component, angiotensin-converting enzyme (ACE) catalyzes synthesis of Ang II from angiotensin I (Ang I) that functions as active compound in blood pressure regulation. This indicates importance of ACE/ACE2 level in regulating blood pressure by targeting Ang II. An outbreak of severe acute respiratory syndrome (SARS) highlighted the additional role of ACE2 as a receptor for SARS coronavirus (SARS-CoV) infection. Main body of the abstract ACE2 is a functional receptor for SARS-CoV and SARS-CoV-2. Activation of spike (S)-protein by either type II transmembrane serine proteases (TTSPs) or cathepsin-mediated cleavage initiates receptor binding and viral entry. In addition to TTSPs, ACE2 can also be trimmed by ADAM 17 (a disintegrin and metalloproteinase 17) that competes for the same receptor. Cleavage by TTSPs activates ACE2 receptor for binding, whereas ADAM17 releases extracellular fragment called soluble ACE2 (sACE2). Structural studies of both ACE2 and S-protein have found critical sites involved in binding mechanism. In addition to studies on structural motifs, few single-nucleotide polymorphism (SNPs) studies have been done to find an association between genetic variants and SARS susceptibility. Though no association was found in those reports, but seeing the non-reproducibility of SNP studies among different ethnic groups, screening of ACE2 SNPs in individual population can be undertaken. Short conclusion Thus, screening for novel SNPs focussing on recently identified critical regions of ACE2 can be targeted to monitor susceptibility towards coronavirus disease 2019 (COVID-19).
Project description:As complex common diseases, asthma and allergic diseases are caused by the interaction of multiple genetic variants with a variety of environmental factors. Candidate-gene studies have examined the involvement of a very large list of genes in asthma and allergy, demonstrating a role for more than 100 loci. These studies have elucidated several themes in the biology and pathogenesis of these diseases. A small number of genes have been associated with asthma or allergy through traditional linkage analyses. The publication of the first asthma-focused genome-wide association (GWA) study in 2007 has been followed by nearly 30 reports of GWA studies targeting asthma, allergy, or associated phenotypes and quantitative traits. GWA studies have confirmed several candidate genes and have identified new, unsuspected, and occasionally uncharacterized genes as asthma susceptibility loci. Issues of results replication persist, complicating interpretation and making conclusions difficult to draw, and much of the heritability of these diseases remains undiscovered. In the coming years studies of complex diseases like asthma and allergy will probably involve the use of high-throughput next-generation sequencing, which will bring a tremendous influx of new information as well as new problems in dealing with vast datasets.
Project description:Host genetic variants can determine their susceptibility to COVID-19 infection and severity as noted in a recent Genome-wide Association Study (GWAS). Given the prominent genetic differences in Indian sub-populations as well as differential prevalence of COVID-19, here, we compute genetic risk scores in diverse Indian sub-populations that may predict differences in the severity of COVID-19 outcomes. We utilized the top 100 most significantly associated single-nucleotide polymorphisms (SNPs) from a GWAS by Pairo-Castineira et al. determining the genetic susceptibility to severe COVID-19 infection, to compute population-wise polygenic risk scores (PRS) for populations represented in the Indian Genome Variation Consortium (IGVC) database. Using a generalized linear model accounting for confounding variables, we found that median PRS was significantly associated (p < 2 x 10-16) with COVID-19 mortality in each district corresponding to the population studied and had the largest effect on mortality (regression coefficient = 10.25). As a control we repeated our analysis on randomly selected 100 non-associated SNPs several times and did not find significant association. Therefore, we conclude that genetic susceptibility may play a major role in determining the differences in COVID-19 outcomes and mortality across the Indian sub-continent. We suggest that combining PRS with other observed risk-factors in a Bayesian framework may provide a better prediction model for ascertaining high COVID-19 risk groups and to design more effective public health resource allocation and vaccine distribution schemes.