Project description:In this study, the mechanistic and kinetic analysis for reactions of CF3OCH(CF3)2 and CF3OCF2CF2H with OH radicals and Cl atoms have been performed at the CCSD(T)//B3LYP/6-311++G(d,p) level. Kinetic isotope effects for reactions CF3OCH(CF3)2/CF3OCD(CF3)2 and CF3OCF2CF2H/CF3OCF2CF2D with OH and Cl were estimated so as to provide the theoretical estimation for future laboratory investigation. All rate constants, computed by canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT), are in reasonable agreement with the limited experimental data. Standard enthalpies of formation for the species were also calculated. Atmospheric lifetime and global warming potentials (GWPs) of the reaction species were estimated, the large lifetimes and GWPs show that the environmental impact of them cannot be ignored. The organic nitrates can be produced by the further oxidation of CF3OC(•)(CF3)2 and CF3OCF2CF2• in the presence of O2 and NO. The subsequent decomposition pathways of CF3OC(O•)(CF3)2 and CF3OCF2CF2O• radicals were studied in detail. The derived Arrhenius expressions for the rate coefficients over 230-350 K are: k T(1) = 5.00 × 10-24T3.57 exp(-849.73/T), k T(2) = 1.79 × 10-24T4.84 exp(-4262.65/T), kT(3) = 1.94 × 10-24 T4.18 exp(-884.26/T), and k T(4) = 9.44 × 10-28T5.25 exp(-913.45/T) cm3 molecule-1 s-1.
Project description:The introduction of fluoroalkylthioether groups has attracted the attention of the drug-discovery community given the special physicochemical and pharmacokinetic features they confer to bioactive compounds, yet these are often limited to standard SCF3 and SCF2H moieties. Herein, two saccharin-based electrophilic reagents have been disclosed for the incorporation of uncommon SCF2CF2H and SCF2CF3 motifs. Their reactivity performance, multigram-scale preparation, and divergent derivatization have been thoroughly investigated with a variety of nucleophiles, including natural products and pharmaceuticals.
Project description:The integration of fluorine into medicinal compounds has become a widely used strategy to improve the biochemical and therapeutic properties of drugs. Inclusion of -CF2H and -OCF3 fluoroalkyl groups has garnered attention due to their bioisosteric properties, enhanced lipophilicity, and potential hydrogen-bonding capability in bioactive substances. In this study, we prepared a series of stable Cu[CF(OCF3)(CF2H)]L n complexes by insertion of commercially available perfluoro(methyl vinyl ether), CF2=CF(OCF3), into Cu-H bonds derived from Stryker's reagent, [CuH(PPh3)]6, using ancillary ligands L. Notably, certain of these complexes effectively transfer the fluoroalkyl group to aroyl chlorides. Through reaction optimization and computational analysis, we identified dimethylsulfoxide as a pivotal coligand, playing a distinctive role in enabling the fluoroalkylation of a range of aroyl chlorides and aryl iodides. The latter also benefits from addition of CuBr to abstract PPh3, generating solvent-stabilized Cu[CF(OCF3)(CF2H)]. These methodologies allow for the introduction of geminal -OCF3 and -CF2H groups in a single transformation.
Project description:We disclosed herein a straightforward strategy for the synthesis of unprecedented N-((trifluoromethyl)thio), N-(trifluoromethyl) amines using a combination of isothiocyanates with a fluoride source and an electrophilic trifluoromethylthiolation reagent. More interestingly, the scalability of the methodology has been demonstrated and the stability of the new motif has been studied.
Project description:Organofluorine compounds are found in several important classes of chemicals, such as pharmaceuticals, agrochemicals, and functional materials. Chemists have been immensely interested in the development of methodologies for expeditious access to fluorine containing building blocks. In this study, we report a new method for the catalytic asymmetric synthesis of CF3-substituted tertiary propargylic alcohols with two contiguous stereogenic centers via the direct aldol reaction of an α-N3 amide to trifluoromethyl ketones. The key to the success of this method is the identification of a catalyst comprising Cu(ii)/chiral hydroxamic acid to promote the desired aldol reaction, constructing a tetrasubstituted carbon in a highly stereoselective fashion. Despite substantial prior advances in asymmetric catalysis, this class of catalysts has not been utilized for the formation of carbon-carbon bond-forming reactions. Our mechanistic study sheds light on the unique profile of this catalytic system, where the Cu(ii) complex plays a bifunctional role of serving as a Lewis acid and a Brønsted base. Furthermore, the densely functionalized aldol adducts undergo chemoselective transformations, affording a series of fluorine containing chiral building blocks with widespread application.
Project description:We herein report a novel entry towards chiral α-SCF3-β2,2-amino acids by carrying out the ammonium salt-catalyzed α-trifluoromethylthiolation of isoxazolidin-5-ones. This approach allowed for high enantioselectivities and high yields and the obtained heterocycles proved to be versatile platforms to access other targets of potential interest.
Project description:An efficient and general method of nucleophilic substitution of benzylic alcohols catalyzed by non-metallic Lewis acid B(C6F5)3 was developed. The reaction could be carried out under mild conditions and more than 35 examples of ethers, thioethers and triarylmethanes were constructed in high yields. Some bioactive organic molecules were synthesized directly using the methods.
Project description:Hierarchical zeolites have the potential to provide a breakthrough in transport limitation, which hinders pristine microporous zeolites and thus may broaden their range of applications. We have explored the use of Pd-doped hierarchical ZSM-5 zeolites for aerobic selective oxidation (selox) of cinnamyl alcohol and benzyl alcohol to their corresponding aldehydes. Hierarchical ZSM-5 with differing acidity (H-form and Na-form) were employed and compared with two microporous ZSM-5 equivalents. Characterization of the four catalysts by X-ray diffraction, nitrogen porosimetry, NH3 temperature-programmed desorption, CO chemisorption, high-resolution scanning transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy allowed investigation of their porosity, acidity, as well as Pd active sites. The incorporation of complementary mesoporosity, within the hierarchical zeolites, enhances both active site dispersion and PdO active site generation. Likewise, alcohol conversion was also improved with the presence of secondary mesoporosity, while strong Brønsted acidity, present solely within the H-form systems, negatively impacted overall selectivity through undesirable self-etherification. Therefore, tuning support porosity and acidity alongside active site dispersion is paramount for optimal aldehyde production.
Project description:The direct transformation of racemic feedstock materials to valuable enantiopure compounds is of significant importance for sustainable chemical synthesis. Toward this goal, the radical mechanism has proven uniquely effective in stereoconvergent carbon-carbon bond forming reactions. Here we report a mechanistically distinct redox-enabled strategy for an efficient enantioconvergent coupling of pyrroles with simple racemic secondary alcohols. In such processes, chirality is removed from the substrate via dehydrogenation and reinstalled in the catalytic reduction of a key stabilized cationic intermediate. This strategy provides significant advantage of utilizing simple pyrroles to react with feedstock alcohols without the need for leaving group incorporation. This overall redox-neutral transformation is also highly economical with no additional reagent nor waste generation other than water. In our studies, oxime-derived iridacycle complexes are introduced, which cooperate with a chiral phosphoric acid to enable heteroarylation of alcohols, accessing a wide range of valuable substituted pyrroles in high yield and enantioselectivity.
Project description:Togni's benziodoxole-based reagents are widely used in trifluoromethylation reactions. It has been established that the kinetically stable hypervalent iodine form (I-CF3) of the reagents is thermodynamically less stable than its acyclic ether isomer (O-CF3). On the other hand, the trifluoromethylthio analogue exists in the thermodynamically stable thioperoxide form (O-SCF3), and the hypervalent form (I-SCF3) has been elusive. Despite the importance of these reagents, very little is known about the reaction mechanisms of their syntheses, which has hampered the development of new reagents of the same family. Herein, we use density functional theory calculations to understand the reasons for the divergent behaviors between the CF3 and SCF3 reagents. We demonstrate that they follow different mechanisms of formation and that the metals involved in the syntheses (potassium in the case of the trifluoromethyl reagent and silver in the trifluoromethylthio analogue) play key roles in the mechanisms and greatly influence the possibility of their rearrangements from the hypervalent (I-CF3, I-SCF3) to the corresponding ether-type form (O-CF3, O-SCF3).