Project description:Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.
Project description:Aflatoxins are carcinogenic fungal secondary metabolites. Levels of aflatoxins in agricultural commodities are stringently regulated by many countries. A cluster of genes is responsible for aflatoxin biosynthesis by Aspergillus flavus and other closely related species. Expression of the clustered aflatoxin genes is governed by a complex network of regulatory mechanisms. To better understand the molecular events that are associated with aflatoxin production, transcription profiling by microarray analyses which compared three independent aflatoxigenic A. flavus strains to individual isogenic progenies that no longer produced aflatoxins after serial transfers was carried out. Twenty-two significantly differentially expressed features were identified. After physical mapping using the A. oryzae genome sequence as the reference, the number of unique genes was reduced to 16. Compared to the parental strains, changes in the aflatoxin gene expression levels in the progenies were not significant, which suggests that the inability to produce aflatoxins is not caused by decreased expression. The only gene showing higher expression levels in the progenies is homologous to glutathione S-transferease genes. Overexpression of this gene, named hcc, at six- to nine-fold in an aflatoxigenic A. flavus did not cause discernible changes in colony morphology or aflatoxin production. Loss of aflatoxin production after serial transfers may not result from a single event but caused by multiple factors. Keywords: Compartiave hybridization toxigenic and atoxigenic lines of Aspergillus Aspergillus flavus NRRL 29459, NRRL 29474, and NRRL 29490 are aflatoxigenic strains originated from soil collection in a peanut field (Terrell Co., Georgia, USA). Strains 459B-20-2, 474A-20, and 499A-20 were nonaflatoxigenic isolates obtained after 20 serial transfers of the parental strains on potato dextrose agar slants (Horn and Dorner 2002). Comparsions in each experiment consisted of one aflatoxigenic parental strain and one nonaflatoxigenic progeny, compared after 48- or 72-hr growth. Each comparison was repeated with duplicate dye-flip.
Project description:Aspergillus flavus and A. parasiticus are two of the most important aflatoxin-producing species that contaminate agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here, we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O-methylsterigmatocystin, but not CPA. Only four out of forty-five attempted interspecific crosses between compatible mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were isolated and were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of putative allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important species. Overall design: aCGH comparison between 3 strains of Aspergillus: 2 parental of either A. flavus (PF) and A. parasiticus (PP) and 1 progeny (F1) analyzed at the probe level. A total of six trio comparisons were made from a total of 56 isolates analyzed by aCGH. Trio comparisons are as follows: IC278 (PF), IC327 (PP) and IC1603 (F1); IC278 (PF), IC65 (PP) and IC1612 (F1); IC278 (PF), IC65 (PP) and IC1616 (F1); IC278 (PF), IC324 (PP) and IC1622 (F1); IC278 (PF), IC324 (PP) and IC1630 (F1); and finally IC278 (PF), IC33 (PP) and IC1637 (F1).
Project description:Aspergillus flavus is the major producer of carcinogenic aflatoxins in crops worldwide. Natural populations of A. flavus show tremendous variation in aflatoxin production some of which can be attributed to extreme environmental conditions (e.g., drought), differential regulation of the aflatoxin biosynthetic pathway, missing cluster genes or loss-of-function mutations. Understanding the evolutionary processes that generate genetic diversity in A. flavus may also explain quantitative and qualitative differences in aflatoxigenicity. Several population studies provide indirect evidence of recombination in the aflatoxin gene cluster and genome-wide, using multilocus genealogical approaches. More recently A. flavus has been shown to be functionally heterothallic and capable of sexual reproduction in laboratory crosses. In the present study, we characterize the progeny from nine A. flavus crosses and show that crossovers in the aflatoxin cluster coincide with inferred recombination blocks and hotspots in natural populations, which suggests that recombination in the cluster is primarily driven by sex. Moreover, we show that a single crossover event in the cluster can restore aflatoxigenicity, which is significant as mycotoxin production in A. flavus is highly heritable. aCGH was used to corroborate inferences from cluster-based MLSTs and to possibly identify additional crosovers within the cluster. aCGH comparison between 3 strains of A. flavus: 2 parental (P) and 1 progeny (F1) analyzed at the probe level. A total of 9 trio comparisons were made from a total of 18 isolates analyzed by aCGH. Trio comparisons are as follows: IC278 (P), IC1179 (P) and IC1650 (F1); IC201 (P), IC310 (P) and IC1719 (F1); IC307 (P), IC308 (P) and IC1751 (F1); IC277 (P), IC311 (P) and IC1766 (F1); IC277 (P), IC311 (P) and IC1775 (F1); IC244 (P), IC277 (P) and IC2205 (F1); IC244 (P), IC277 (P) and IC2207 (F1); IC301 (P), IC1179 (P) and IC2171 (F1); and finally IC244 (P), IC277 (P) and IC2209 (F1).
Project description:Aflatoxins are carcinogenic fungal secondary metabolites. Levels of aflatoxins in agricultural commodities are stringently regulated by many countries. A cluster of genes is responsible for aflatoxin biosynthesis by Aspergillus flavus and other closely related species. Expression of the clustered aflatoxin genes is governed by a complex network of regulatory mechanisms. To better understand the molecular events that are associated with aflatoxin production, transcription profiling by microarray analyses which compared three independent aflatoxigenic A. flavus strains to individual isogenic progenies that no longer produced aflatoxins after serial transfers was carried out. Twenty-two significantly differentially expressed features were identified. After physical mapping using the A. oryzae genome sequence as the reference, the number of unique genes was reduced to 16. Compared to the parental strains, changes in the aflatoxin gene expression levels in the progenies were not significant, which suggests that the inability to produce aflatoxins is not caused by decreased expression. The only gene showing higher expression levels in the progenies is homologous to glutathione S-transferease genes. Overexpression of this gene, named hcc, at six- to nine-fold in an aflatoxigenic A. flavus did not cause discernible changes in colony morphology or aflatoxin production. Loss of aflatoxin production after serial transfers may not result from a single event but caused by multiple factors. Keywords: Compartiave hybridization toxigenic and atoxigenic lines of Aspergillus Overall design: Aspergillus flavus NRRL 29459, NRRL 29474, and NRRL 29490 are aflatoxigenic strains originated from soil collection in a peanut field (Terrell Co., Georgia, USA). Strains 459B-20-2, 474A-20, and 499A-20 were nonaflatoxigenic isolates obtained after 20 serial transfers of the parental strains on potato dextrose agar slants (Horn and Dorner 2002). Comparsions in each experiment consisted of one aflatoxigenic parental strain and one nonaflatoxigenic progeny, compared after 48- or 72-hr growth. Each comparison was repeated with duplicate dye-flip.
Project description:Aflatoxins are carcinogenic fungal secondary metabolites. Levels of aflatoxins in agricultural commodities are stringently regulated by many countries. A cluster of genes is responsible for aflatoxin biosynthesis by Aspergillus flavus and other closely related species. Expression of the clustered aflatoxin genes is governed by a complex network of regulatory mechanisms. To better understand the molecular events that are associated with aflatoxin production, transcription profiling by microarray analyses which compared three independent aflatoxigenic A. flavus strains to individual isogenic progenies that no longer produced aflatoxins after serial transfers was carried out. Twenty-two significantly differentially expressed features were identified. After physical mapping using the A. oryzae genome sequence as the reference, the number of unique genes was reduced to 16. Compared to the parental strains, changes in the aflatoxin gene expression levels in the progenies were not significant, which suggests that the inability to produce aflatoxins is not caused by decreased expression. The only gene showing higher expression levels in the progenies is homologous to glutathione S-transferease genes. Overexpression of this gene, named hcc, at six- to nine-fold in an aflatoxigenic A. flavus did not cause discernible changes in colony morphology or aflatoxin production. Loss of aflatoxin production after serial transfers may not result from a single event but caused by multiple factors. Keywords: Compartiave hybridization toxigenic and atoxigenic lines of Aspergillus Aspergillus flavus NRRL 29459, NRRL 29474, and NRRL 29490 are aflatoxigenic strains originated from soil collection in a peanut field (Terrell Co., Georgia, USA). Strains 459B-20-2, 474A-20, and 499A-20 were nonaflatoxigenic isolates obtained after 20 serial transfers of the parental strains on potato dextrose agar slants (Horn and Dorner 2002). Comparsions in each experiment consisted of one aflatoxigenic parental strain and one nonaflatoxigenic progeny, compared after 48- or 72-hr growth. Each comparison was repeated with duplicate dye-flip.
2010-05-26 | E-GEOD-8185 | ArrayExpress
Project description:ddRADseq of Aspergillus flavus
Project description:Aspergillus flavus is the major producer of carcinogenic aflatoxins in crops worldwide. Natural populations of A. flavus show tremendous variation in aflatoxin production some of which can be attributed to extreme environmental conditions (e.g., drought), differential regulation of the aflatoxin biosynthetic pathway, missing cluster genes or loss-of-function mutations. Understanding the evolutionary processes that generate genetic diversity in A. flavus may also explain quantitative and qualitative differences in aflatoxigenicity. Several population studies provide indirect evidence of recombination in the aflatoxin gene cluster and genome-wide, using multilocus genealogical approaches. More recently A. flavus has been shown to be functionally heterothallic and capable of sexual reproduction in laboratory crosses. In the present study, we characterize the progeny from nine A. flavus crosses and show that crossovers in the aflatoxin cluster coincide with inferred recombination blocks and hotspots in natural populations, which suggests that recombination in the cluster is primarily driven by sex. Moreover, we show that a single crossover event in the cluster can restore aflatoxigenicity, which is significant as mycotoxin production in A. flavus is highly heritable. aCGH was used to corroborate inferences from cluster-based MLSTs and to possibly identify additional crosovers within the cluster. Overall design: aCGH comparison between 3 strains of A. flavus: 2 parental (P) and 1 progeny (F1) analyzed at the probe level. A total of 9 trio comparisons were made from a total of 18 isolates analyzed by aCGH. Trio comparisons are as follows: IC278 (P), IC1179 (P) and IC1650 (F1); IC201 (P), IC310 (P) and IC1719 (F1); IC307 (P), IC308 (P) and IC1751 (F1); IC277 (P), IC311 (P) and IC1766 (F1); IC277 (P), IC311 (P) and IC1775 (F1); IC244 (P), IC277 (P) and IC2205 (F1); IC244 (P), IC277 (P) and IC2207 (F1); IC301 (P), IC1179 (P) and IC2171 (F1); and finally IC244 (P), IC277 (P) and IC2209 (F1).
Project description:Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled "Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]" (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016). The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.
Project description:Aspergillus flavus is the major producer of carcinogenic aflatoxins in crops worldwide. Natural populations of A. flavus show tremendous variation in aflatoxin production some of which can be attributed to extreme environmental conditions (e.g., drought), differential regulation of the aflatoxin biosynthetic pathway, missing cluster genes or loss-of-function mutations. Understanding the evolutionary processes that generate genetic diversity in A. flavus may also explain quantitative and qualitative differences in aflatoxigenicity. Several population studies provide indirect evidence of recombination in the aflatoxin gene cluster and genome-wide, using multilocus genealogical approaches. More recently A. flavus has been shown to be functionally heterothallic and capable of sexual reproduction in laboratory crosses. In the present study, we characterize the progeny from nine A. flavus crosses and show that crossovers in the aflatoxin cluster coincide with inferred recombination blocks and hotspots in natural populations, which suggests that recombination in the cluster is primarily driven by sex. Moreover, we show that a single crossover event in the cluster can restore aflatoxigenicity, which is significant as mycotoxin production in A. flavus is highly heritable. aCGH was used to corroborate inferences from cluster-based MLSTs and to possibly identify additional crosovers within the cluster. aCGH comparison between 3 strains of A. flavus: 2 parental (P) and 1 progeny (F1) analyzed at the probe level. A total of 9 trio comparisons were made from a total of 18 isolates analyzed by aCGH. Trio comparisons are as follows: IC278 (P), IC1179 (P) and IC1650 (F1); IC201 (P), IC310 (P) and IC1719 (F1); IC307 (P), IC308 (P) and IC1751 (F1); IC277 (P), IC311 (P) and IC1766 (F1); IC277 (P), IC311 (P) and IC1775 (F1); IC244 (P), IC277 (P) and IC2205 (F1); IC244 (P), IC277 (P) and IC2207 (F1); IC301 (P), IC1179 (P) and IC2171 (F1); and finally IC244 (P), IC277 (P) and IC2209 (F1).