Project description:Differentiation of hemopoietic stem cells into granulocytes is characterized by distinct changes in the transcriptome. We analyzed mRNA expression in primary murine myeloid cells at four successive stages of hemopoietic differentiation; Lin- Sca1+ cKit+ stem/progenitor cells (LSKs), promyelocytes, myelocytes and granulocytes.
Project description:Differentiation of hemopoietic stem cells into granulocytes is characterized by distinct changes in the transcriptome. We analyzed mRNA expression in primary murine myeloid cells at four successive stages of hemopoietic differentiation; Lin- Sca1+ cKit+ stem/progenitor cells (LSKs), promyelocytes, myelocytes and granulocytes. Using fluorescence–activated cell sorting, we isolated primary murine myeloid cells at four successive stages of hemopoietic differentiation; Lin- Sca1+ cKit+ stem/progenitor cells (LSK), promyelocytes, myelocytes and granulocytes.
Project description:This study sought to determine the dynamic changes of miRNA expression during mouse granulopoiesis. We not only performed analyses of miRNA expression levels in whole cells but also analyzed purified nuclear and cytoplasmic cell fractions to profile miRNA subcellular localization. qRT-PCR analysis of miRNAs was performed on whole cell, nuclear and cytoplasmic RNAs extracted from mouse hemopoietic stem cells (LSKs), promyelocytes, myelocytes and granulocytes. 100 ng of RNA was reversed transcribed using the Taqman miRNA Reverse Transcription Kit and Megaplex RT Primers rodent pool A and B (Life Technologies). Complementary DNA (cDNA) was amplified using a TaqMan rodent microRNA A and B Array v2.0 (Life Technologies) with TaqMan Universal PCR Master Mix on an ABI 7900HT Sequence Detection System.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.
Project description:To investigate the differences in microRNA expression profiles between fibrotic and normal livers, we performed microRNA microarrays for total RNA extracts isolated from mouse livers treated with carbontetrachloride (CCl4) or corn-oil for 10 weeks (n=3/group). MicroRNAs were considered to have significant differences in expression level when the expression difference showed more than two-fold change between the experimental and control groups at p<0.05. We found that 12 miRNAs were differentially expressed in CCl4-induced fibrotic liver.
Project description:Using mRNA-seq, we determined intron retaining genes that were differentially regulated in FACS purified cells at three progressive stages of mouse granulopoiesis; CD34+Kit+Gr-1low promyelocytes, CD34-Kit-Gr-1mid myelocytes and CD34-Kit-Gr-1high granulocytes. We found that IR affects 86 genes, including those specific to granulocyte (Lyz2 and MMP8) and nuclear architecture (Lmnb1 and Lbr). IR was associated with the decrease in protein levels measured by mass spectrometry (P=0.0015, binomial test). There was a significant overlap of IR between human and mouse (P=2.85E-22, hypergeometric test), showing that IR is conserved.Inhibition of NMD in granulocytes resulted in marked accumulation of 39/86 intron retaining mRNAs (P<0.05, RUV procedure with Holm-Bonferroni correction), indicating that IR triggers NMD to downregulate mRNA and protein expression. Sequencing of polyadenylated RNA from three types of myeloid cells (promyelocytes, myelocytes and granulocytes) using Illumina GAIIx
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.