Project description:BackgroundThe correlation between diabetic nephropathy (DN) and gut microbiota (GM) has been suggested in numerous animal experiments and cross-sectional studies. However, a causal association between GM and DN has not been ascertained.MethodsThis research adopted MR analysis to evaluate the causal link between GM and DN derived from data acquired through publicly available genome-wide association studies (GWAS). The study utilized the inverse variance weighted (IVW) approach to assess causal association between GM and DN. Four additional methods including MR-Egger, weighted median, weighted mode, and simple mode were employed to ensure comprehensive analysis and robust results. The Cochran's Q test and the MR-Egger method were conducted to identify heterogeneity and horizontal pleiotropy, respectively. The leave-one-out approach was utilized to evaluate the stability of MR results. Finally, a reverse MR was performed to identify the reverse causal association between GM and DN.ResultsAccording to IVW analysis, Class Verrucomicrobiae (p = 0.003), Order Verrucomicrobiales (p = 0.003), Family Verrucomicrobiaceae (p = 0.003), Genus Akkermansia (p = 0.003), Genus Catenibacterium (p = 0.031), Genus Coprococcus 1 (p = 0.022), Genus Eubacterium hallii group (p = 0.018), and Genus Marvinbryantia (p = 0.023) were associated with a higher risk of DN. On the contrary, Class Actinobacteria (p = 0.037), Group Eubacterium ventriosum group (p = 0.030), Group Ruminococcus gauvreauii group (p = 0.048), Order Lactobacillales (p = 0.045), Phylum Proteobacteria (p = 0.017) were associated with a lower risk of DN. The sensitivity analysis did not identify any substantial pleiotropy or heterogeneity in the outcomes. We found causal effects of DN on 11 GM species in the reverse MR analysis. Notably, Phylum Proteobacteria and DN are mutually causalities.ConclusionThis study identified the causal association between GM and DN with MR analysis, which may enhance the understanding of the intestinal-renal axis and provide novel potential targets for early non-invasive diagnosis and treatment of DN.
Project description:BackgroundFibromyalgia (FM) is a syndrome characterized by chronic and widespread musculoskeletal pain. A number of studies have implied a potential association between gut microbiota and FM. However, the casual association between gut microbiota and FM remains unknown.MethodMendelian randomization (MR) study was conducted using the summary statistics of genetic variants from the genome-wide association study (GWAS). Inverse variance weighted (IVW), combined with MR-Egger and weighted median were used to investigate the causal association between 119 gut microbiota genera and FM. Sensitivity analyses were performed on the MR results, including heterogeneity test, leave-one-out test and pleiotropy test.ResultsA total of 1,295 single nucleotide polymorphism (SNPs) were selected as instrumental variables (IVs), with no significant heterogeneity and pleiotropy according to the sensitivity analyses. Five gut microbiota genera were found to have significant casual association with FM. Coprococcus2 (OR = 2.317, p-value = 0.005, 95% CI: 1.289-4.167), Eggerthella (OR = 1.897, p-value = 0.001, 95% CI: 1.313-2.741) and Lactobacillus (OR = 1.576, p-value =0.020, 95% CI: 1.073-2.315) can increase the risk of FM. FamillyXIIIUCG001 (OR = 0.528, p-value = 0.038, 95% CI: 0.289-0.964) and Olsenella (OR = 0.747, p-value = 0.050, 95% CI: 0.557-1.000) can decrease the risk of FM.ConclusionThis MR study found that gut microbiota is casually associated with FM. New insights into the mechanisms of FM mediated by gut microbiota are provided.
Project description:BackgroundSeveral recent studies speculated that the gut microbiota is associated with sensorineural hearing loss (SNHL) and proposed the concept of the gut-inner ear axis. However, the causal effect of gut microbiota on SNHL is still unknown. In this study, we performed a two-sample Mendelian randomization (MR) analysis to estimate the causal effect of gut microbiota on SNHL.MethodsGut microbiota data were obtained from the largest available genome-wide association study (n = 18,340) conducted by the MiBioGen consortium. The summary statistics of SNHL were obtained from the FinnGen consortium R8 release data (28,310 cases and 302,750 controls). The causal effects were estimated with inverse-variance weighted, MR-Egger, and weighted median. Reverse Mendelian randomization analysis was performed on the bacteria that were found to be associated with SNHL in forward Mendelian randomization analysis. We then performed sensitivity analyses, including Cochran's Q-test, MR-Egger intercept test, MR-PRESSO, cML-MA-BIC, and leave-one-out analysis, to detect heterogeneity and pleiotropy.ResultsThe inverse-variance weighted results suggested that Lachnospiraceae (UCG001) had a significant protective effect against SNHL (odds ratio = 0.85, 95% confidence interval: 0.78-0.93, P = 6.99 × 10-4). In addition, Intestinimonas (odds ratio = 0.89, 95% confidence interval: 0.82-0.97, P = 8.53 × 10-3) presented a suggestively protective effect on SNHL. Rikenellaceae (RC9gutgroup) (odds ratio = 1.08, 95% confidence interval: 1.02-1.15, P = 0.01) and Eubacterium (hallii group) (odds ratio = 1.12, 95% confidence interval: 1.00-1.24, P = 0.048) suggestively increase the risk of SNHL. The results of the reverse MR analysis showed that there is no significant causal effect of SNHL on the gut microbiota. No significant heterogeneity of instrumental variables or pleiotropy was detected.ConclusionThe evidence that the four genera mentioned above are associated with SNHL supports the hypothesis of a gut-inner ear axis. Our study provides microbial markers for the prevention and treatment of SNHL, and further studies are needed to explore the mechanisms of the gut microbiome-inner ear axis in health and diseases.
Project description:BackgroundRecent studies have shown that an imbalance in gut microbiota (GM) may not always be associated with endometriosis (EMS). To investigate this further, we conducted a two-sample Mendelian randomization study.MethodsMR analysis was performed on genome-wide association study (GWAS) summary statistics of GM and EMS. Specifically, the MiBioGen microbiota GWAS (N = 18,340) was used as exposure. The FinnGen study GWAS (8,288 EMS cases and 68,969 controls) was used as outcome. We primarily used the inverse variance weighted (IVW) method to analyze the correlation and conducted a sensitivity analysis to verify its reliability.Results(1) MR analysis: The results of the IVW method confirmed that a total of 8 GM taxa were related to the risk of EMS. Class-Melainabacteria (p = 0.036), family-Ruminococcaceae (p = 0.037), and genus-Eubacteriumruminantium (p = 0.015) had a protective effect on EMS, whereas order-Bacillales (p = 0.046), family-Prevotellaceae (p = 0.027), genus-Anaerotruncus (p = 0.025), genus-Olsenella (p = 0.036) and genus-RuminococcaceaeUCG002 (p = 0.035) could increase the risk of EMS. (2) Sensitivity analysis: Cochrane's Q test (p > 0.05), MR-Egger intercept method (p > 0.05), and leave-one-out method confirmed the robustness of MR results.ConclusionThis study performed a MR analysis on two large national databases and identified the association between 8 GM taxa and EMS. These taxa could potentially be utilized for indirectly diagnosing EMS and could lead to novel perspectives in research regarding the pathogenesis, diagnosis, and treatment of EMS.
Project description:BackgroundTo clarify the causal relationship between gut microbiota and diabetic nephropathy (DN), we employed Mendelian randomization (MR). Despite a strong correlation observed, establishing causality is still unclear. By utilizing MR, we aimed to investigate this relationship further and shed light on the potential causal effect of gut microbiota on DN.MethodsGenetic instrumental variables for gut microbiota were obtained from a GWAS with 18340 participants. DN summary statistics (1032 cases, 451248 controls) were sourced from a separate GWAS. The primary analysis used the inverse-variance weighted (IVW) method. Reverse MR analysis was conducted to explore reverse causation. Rigorous sensitivity analyses were performed to ensure the resilience and reliability of the study's findings.ResultsWe found two bacterial traits associated with an increased risk of DN: genus LachnospiraceaeUCG008 (OR: 1.4210; 95% CI: 1.0450, 1.9322; p = 0.0250) and genus Terrisporobacter (OR: 1.9716; 95% CI: 1.2040, 3.2285; p = 0.0070). Additionally, phylum Proteobacteria (OR: 0.4394; 95% CI: 0.2721, 0.7096; p = 0.0008) and genus Dialister (OR: 0.4841; 95% CI: 0.3171, 0.7390; p = 0.0008) were protective against DN. Sensitivity analyses consistently supported these results. In the reverse MR analysis, no statistically significant associations were observed between DN and these four bacterial traits.ConclusionsOur analyses confirmed a potential causal relationship between certain gut microbiota taxa and the risk of DN. However, additional studies are required to elucidate the underlying mechanisms through which gut microbiota influences the development of DN.
Project description:BackgroundSeveral recent observational studies have reported that gut microbiota composition is associated with preeclampsia. However, the causal effect of gut microbiota on preeclampsia-eclampsia is unknown.MethodsA two-sample Mendelian randomization study was performed using the summary statistics of gut microbiota from the largest available genome-wide association study meta-analysis (n=13,266) conducted by the MiBioGen consortium. The summary statistics of preeclampsia-eclampsia were obtained from the FinnGen consortium R7 release data (5731 cases and 160,670 controls). Inverse variance weighted, maximum likelihood, MR-Egger, weighted median, weighted model, MR-PRESSO, and cML-MA were used to examine the causal association between gut microbiota and preeclampsia-eclampsia. Reverse Mendelian randomization analysis was performed on the bacteria that were found to be causally associated with preeclampsia-eclampsia in forward Mendelian randomization analysis. Cochran's Q statistics were used to quantify the heterogeneity of instrumental variables.ResultsInverse variance weighted estimates suggested that Bifidobacterium had a protective effect on preeclampsia-eclampsia (odds ratio = 0.76, 95% confidence interval: 0.64-0.89, P = 8.03 × 10-4). In addition, Collinsella (odds ratio = 0.77, 95% confidence interval: 0.60-0.98, P = 0.03), Enterorhabdus (odds ratio = 0.76, 95% confidence interval: 0.62-0.93, P = 8.76 × 10-3), Eubacterium (ventriosum group) (odds ratio = 0.76, 95% confidence interval: 0.63-0.91, P = 2.43 × 10-3), Lachnospiraceae (NK4A136 group) (odds ratio = 0.77, 95% confidence interval: 0.65-0.92, P = 3.77 × 10-3), and Tyzzerella 3 (odds ratio = 0.85, 95% confidence interval: 0.74-0.97, P = 0.01) presented a suggestive association with preeclampsia-eclampsia. According to the results of reverse MR analysis, no significant causal effect of preeclampsia-eclampsia was found on gut microbiota. No significant heterogeneity of instrumental variables or horizontal pleiotropy was found.ConclusionsThis two-sample Mendelian randomization study found that Bifidobacterium was causally associated with preeclampsia-eclampsia. Further randomized controlled trials are needed to clarify the protective effect of probiotics on preeclampsia-eclampsia and their specific protective mechanisms.
Project description:Numerous studies have demonstrated a correlation between alterations in gut microbiota (GM) and levels of body metabolites in ovarian cancer (OC). However, the specific causal relationships underlying these associations remain unclear. This study utilized summary statistics of GM from the MiBioGen consortium, along with an unprecedented dataset comprising 1091 blood metabolites and 309 metabolite ratios from the UK Biobank, in conjunction with OC data from the FinnGen Consortium R9 release. We conducted bidirectional Mendelian randomization (MR) analyses to investigate the causal relationships between GM and OC. Additionally, a two-step MR approach was employed to identify potential mediating metabolites. Our analysis revealed significant associations between 6 specific microbiota taxa and OC. Furthermore, we identified several plasma metabolites that act as mediators of the association between GM and OC. In the two-step MR analysis, we observed a negative correlation between 4-methoxyphenol sulfate and pregnenetriol disulfate levels with OC. The genus Lachnospiraceae UCG008 potentially increases the risk of OC by decreasing 4-methoxyphenol sulfate levels, while the genus Howardella may elevate the risk of OC by reducing pregnenetriol disulfate levels, with mediation proportions of 22.35% and 4.23%, respectively. Additionally, levels of dilinoleoyl-GPE (18:2/18:2) and N-acetylkynurenine (2) were positively correlated with OC. The inhibitory effect of the genus Ruminococcus 1 on OC may be mediated through 1,2-dilinoleoyl-GPE (18:2/18:2) and N-acetylkynurenine (2), with mediation proportions of 10.15% and 11.32%, respectively. Our findings highlight the complex relationship among GM, plasma metabolites, and OC. The identified associations and mediation effects offer valuable insights into potential therapeutic approaches targeting GM for the management of OC.
Project description:Abstract Background Observational studies have indicated a potential link between gut microbiota and sarcopenia. However, the underlying mechanisms and a causal relationship have not been established. Thus, the objective of this study is to examine the possible causal association between gut microbiota and sarcopenia-related traits, including low hand-grip strength and appendicular lean mass (ALM), to shed light on the gut–muscle axis. Methods To investigate the potential impact of gut microbiota on low hand-grip strength and ALM, we utilized a two-sample Mendelian randomization (MR) approach. Summary statistics were obtained from genome-wide association studies of gut microbiota, low hand-grip strength, and ALM. The primary MR analysis employed the random-effects inverse-variance weighted (IVW) method. To assess the robustness, we conducted sensitivity analyses using the MR pleiotropy residual sum and outlier (MR-PRESSO) test to detect and correct for horizontal pleiotropy, as well as the MR-Egger intercept test and leave-one-out analysis. Results Alcaligenaceae, Family XIII, and Paraprevotella were positively associated with the risk of low hand-grip strength (P-values < 0.05). Streptococcaceae were negatively associated with low hand-grip strength (P-values < 0.05). Eight bacterial taxa (Actinomycetales, Actinomycetaceae, Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, Bacteroides, Marvinbryantia, and Phascolarctobacterium) were associated with a higher risk of ALM (P-values < 0.05). Eubacterium fissicatena group was negatively associated with ALM (P-values < 0.05). Conclusion We found several gut microbiota components causally associated with sarcopenia-related traits. Our findings provided insights into novel strategies for the prevention and treatment of sarcopenia through the regulation of the gut microbiota, contributing to a better understanding of the gut–muscle axis.
Project description:BackgroundPrevious observational cohort studies have shown that the composition of the gut microbiota is related to the risk of intrahepatic cholestasis of pregnancy (ICP), although it is unclear if the association is causative. This study used Mendelian randomization (MR) to systematically examine whether the gut microbiota was causally linked to ICP.MethodsWe obtained the genome-wide association study (GWAS) summary statistics of gut microbiota and ICP from published GWASs. Maximum likelihood (ML), MR-Egger regression, weighted median, inverse variance weighted (IVW), and weighted model were used to investigate the causal association between gut microbiota and ICP. We further conducted a series of sensitivity analyses to confirm the robustness of the primary results of the MR analyses. Reverse MR analysis was performed on the bacterial taxa that were reported to be causally linked to ICP risk in forwarding MR analysis to evaluate the possibility of reverse causation.ResultsMR analysis revealed that phylum Tenericutes (OR: 1.670, 95%CI: 1.073-2.598, P = 0.023), class Bacteroidia (OR: 1.644, 95%CI: 1.031-2.622, P = 0.037), class Mollicutes (OR: 1.670, 95%CI: 1.073-2.598, P = 0.023), and order Bacteroidales (OR: 1.644, 95%CI: 1.031-2.622, P = 0.037), and were positively associated with the risk of ICP. And we identified that the relative abundance of genus Dialister (OR: 0.562, 95%CI: 0.323-0.977, P = 0.041), genus Erysipelatoclostridium (OR: 0.695, 95%CI: 0.490-0.987, P = 0.042), genus Eubacterium (brachy group) (OR: 0.661, 95%CI: 0.497-0.880, P = 0.005), genus Eubacterium (hallii group) (OR: 0.664, 95%CI: 0.451-0.977, P = 0.037), genus Holdemania (OR: 0.590, 95%CI: 0.414-0.840, P = 0.003), genus Ruminococcus (torques group) (OR: 0.448, 95%CI: 0.235-0.854, P = 0.015), and genus Veillonella (OR: 0.513, 95%CI: 0.294-0.893, P = 0.018) were related to a lower risk of ICP. Additional sensitivity analyses confirmed the robustness of the association between specific gut microbiota composition and ICP. No evidence of reverse causality from ICP to identified bacterial taxa was found in the findings of the reverse MR analyses.ConclusionsUnder MR assumptions, our findings propose new evidence of the relationship between gut microbiota and ICP risk. Our results show that the gut microbiota may be useful target of intervention for ICP.
Project description:BackgroundPrevious observational studies have indicated a correlation between the gut microbiota and influenza; however, the exact nature of the bidirectional causal connection remains uncertain.MethodA two-way, two-sample Mendelian randomization (MR) study was conducted to evaluate the possible causal connection between the gut microbiota and the two outcomes of influenza (pneumonia without influenza and influenza pneumonia). The statistical analysis of gut microbiota is derived from the information of the most extensive meta-analysis (GWAS) conducted by the MiBioGen Alliance, encompassing a sample size of 18,340.The summary statistical data for influenza (not pneumonia, n = 291,090) and influenza pneumonia (n = 342,499) are from GWAS data published by FinnGen consortium R8.Estimate and summarize Single-nucleotide polymorphisms (SNPs) using Inverse variance weighted (IVW), MR Egger, and Weighted median (WM) in bidirectional MR analysis. To assess the heterogeneity, horizontal pleiotropy, and stability of SNPs, we employed Cochran's Q test, MR Egger intercept test, and sensitivity analysis.ResultThe IVW analysis indicated that there was a significant association between influenza infection and five bacterial taxa. Additionally, the abundance changes of seven gut microbiota were found to be causally related to influenza infection. In addition, seven bacterial taxa showed a significant association with the occurrence of influenza pneumonia. The findings from the WM analysis largely support the outcomes of IVW, however, the results of MR egger analysis do not align with IVW. Furthermore, there is no proof to substantiate the cause-and-effect relationship between influenza pneumonia and the composition of gut microbiota.ConclusionThis analysis demonstrates a possible bidirectional causal connection between the prevalence of particular gut microbiota and the occurrence of influenza infection. The presence of certain gut microbiota may potentially contribute to the development of pneumonia caused by influenza. Additional investigation into the interaction between particular bacterial communities and influenza can enhance efforts in preventing, monitoring, and treating influenza.