Ontology highlight
ABSTRACT: Background
Quality and reproducibility of radiomics studies are essential requirements for the standardisation of radiomics models. As recent data-driven respiratory gating (DDG) [18F]-FDG has shown superior diagnostic performance in lung cancer, we evaluated the impact of DDG on the reproducibility of radiomics features derived from [18F]-FDG PET/CT in comparison to free-breathing flow (FB) imaging.Methods
Twenty four lung nodules from 20 patients were delineated. Radiomics features were derived on FB flow PET/CT and on the corresponding DDG reconstruction using the QuantImage v2 platform. Lin's concordance factor (Cb) and the mean difference percentage (DIFF%) were calculated for each radiomics feature using the delineated nodules which were also classified by anatomical localisation and volume. Non-reproducible radiomics features were defined as having a bias correction factor Cb < 0.8 and/or a mean difference percentage DIFF% > 10.Results
In total 141 features were computed on each concordance analysis, 10 of which were non-reproducible on all pulmonary lesions. Those were first-order features from Laplacian of Gaussian (LoG)-filtered images (sigma = 1 mm): Energy, Kurtosis, Minimum, Range, Root Mean Squared, Skewness and Variance; Texture features from Gray Level Cooccurence Matrix (GLCM): Cluster Prominence and Difference Variance; First-order Standardised Uptake Value (SUV) feature: Kurtosis. Pulmonary lesions located in the superior lobes had only stable radiomics features, the ones from the lower parts had 25 non-reproducible radiomics features. Pulmonary lesions with a greater size (defined as long axis length > median) showed a higher reproducibility (9 non-reproducible features) than smaller ones (20 non-reproducible features).Conclusion
Calculated on all pulmonary lesions, 131 out of 141 radiomics features can be used interchangeably between DDG and FB PET/CT acquisitions. Radiomics features derived from pulmonary lesions located inferior to the superior lobes are subject to greater variability as well as pulmonary lesions of smaller size.
SUBMITTER: Faist D
PROVIDER: S-EPMC9617997 | biostudies-literature | 2022 Oct
REPOSITORIES: biostudies-literature
Faist Daphné D Jreige Mario M Oreiller Valentin V Nicod Lalonde Marie M Schaefer Niklaus N Depeursinge Adrien A Prior John O JO
European journal of hybrid imaging 20221030 1
<h4>Background</h4>Quality and reproducibility of radiomics studies are essential requirements for the standardisation of radiomics models. As recent data-driven respiratory gating (DDG) [<sup>18</sup>F]-FDG has shown superior diagnostic performance in lung cancer, we evaluated the impact of DDG on the reproducibility of radiomics features derived from [<sup>18</sup>F]-FDG PET/CT in comparison to free-breathing flow (FB) imaging.<h4>Methods</h4>Twenty four lung nodules from 20 patients were deli ...[more]